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Abstract

Peptide mapping by means of liquid chromatography is a powerful technique used for the characterisation and analysis
of the primary structure of proteins. Subtle changes in the covalent structure of the protein can be detected by means of the
chromatographic profile (fingerprint). Chromatographic methods, however, display variations in the chromatographic profile
even at identical instrumental settings and sample conditions. These variations may be due to changes of the chromatographic
conditions, e.g. slight shifts in column temperature, and degradation or alterations of the stationary phase or small changes in the
trifluoroacetic acid (TFA) concentration. Such variations may result in varying retention times and peak shapes of the analytes and
differences in the chromatographic baseline, thereby having a detrimental impact on the results obtained on multivariate analysis
of peptide maps. In order to reduce the non-sample-related variations and to be able to more fully extract the information
in peptide mapping, approaches for achieving this objective are outlined in the present study. These methods are denoising
and data compression of the chromatograms by wavelets, baseline corrections by linear interpolation, and peak shift alignments
towards a target chromatogram by means of a genetic algorithm. Visual inspections of preprocessed chromatograms and principal
component analysis (PCA) score plots demonstrate the efficiency of the methodology used. Furthermore, deliberately added
changes, e.g. insertions of small Gaussian peaks (outliers), are more easily detected by the proposed methods than from the
original chromatograms by multivariate analysis.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Peptide mapping is a crucial analytical procedure
for protein characterisation and analysis, which in-
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volves chemical or enzymatic cleavage of the protein
into peptide fragments[1–3]. Typically, separation
and identification of these peptide fragments is per-
formed by means of liquid chromatography and
through the retention time of the resulting fragments
[1,4–6]. Recently, mass spectrometric detection has
become increasingly used[7,8], even replacing the
separation step, e.g. matrix-assisted laser desorption
mass spectrometry (MALDI-MS)[9] and nano elec-
trospray ionisation-MS[10].
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The basic information gained from peptide mapping
is the primary structure of the protein. Since the tech-
nique is sensitive to slight modifications of the protein
that can occur as a consequence of post-translation,
mistranslation, and crossover, point modifications at
the single amino acid level can be identified[1,11].
The method gives a further opportunity to check batch
consistency by comparison with a reference standard,
thereby serving a purpose in quality control testing
[3,12,13]. In order to meet the requirements of a
quality-control method, it needs to be validated. Ex-
tensive reports of the validation of peptide mapping
can be found in the literature[1,2,14,15], where var-
ious critical steps in the peptide mapping procedures
are pinpointed.

Information on different kinds of modifications of-
ten has as a starting point a visual comparison of the
chromatographic profile with that of a reference chro-
matogram, this traditionally being the sole means of
information extraction. This approach to the detection
of alterations in the chromatographic profile thus re-
lies heavily on the expertise of the scientist involved.
The chromatographic profile sometimes consists of up
to hundreds of peaks and may undergo changes in the
number of peaks, peak shapes, peak shifts and base-
line patterns, depending on the type of alteration of
the protein. Variations in the chromatographic condi-
tions and in sample workup and digestion conditions
may also alter the chromatographic profile.

Complex patterns, such as peptide maps, are gener-
ally considered to be interesting candidates for multi-
variate analysis aimed at clustering and classification.
For instance, principal component analysis has been
used for statistical validation of HPLC peptide map-
ping reproducibility and in a ruggedness study[14,15].
Woodward and Geiser[16] have used principal com-
ponent multivariate visualisation for minimisation of
baseline disturbance. Furthermore, in the papers of
Malmquist [17] and Malmquist and Danielsson[18],
the importance of data preprocessing in conjunction
with HPLC peptide mapping and multivariate analysis
has been pointed out. Malmquist and Danielsson[18]
have shown that their approach of retention alignment
by a cross-correlation function and a four-step proce-
dure makes the principal component analysis feasible
for peptide mapping.

It this study we address issues such as how to deal
with variations in retention times, noise and baseline

in order to facilitate multivariate analysis for detection
and characterisation of alteration of generated peptide
maps generated by reversed-phase liquid chromatog-
raphy with single UV wavelength detection, without
compromising the ability to identify modifications
exposed by the protein. Techniques comprising, de-
noising and data compression, baseline correction and
peak shift alignment, and multivariate visualisation
were employed.

2. Experimental

2.1. Chemistry

Lactate dehydrogenase (LDH) variants were
purchased from Boehringer Mannheim. Lysyl en-
dopeptidase fromAchromobacter lyticusM497-1 was
obtained from Waco Chemicals. The LDH species,
from porcine heart, bovine heart, porcine muscle and
rabbit muscle, were delivered in 3.2 M ammonium
sulphate. Prior to digestion, the buffer was changed
to 6 M guanidine hydrochloride using a micro con-
centrator with a cut-off of 10 kDa. In an experiment,
100�l of sample with a concentration of 0.5 mg/ml
was centrifuged for 40 min at 7000× g. The sample
was washed twice with water and eluted with 6 M
guanidine HCl by turning the concentrator upside
down. LDH samples were preincubated for 30 min
at 37◦C, diluted with 15 mM Tris–Buffer to give
2 M guanidine HCl and the pH was adjusted to
8.2. For the cleavage reaction, lysyl peptidase was
added in an enzyme:protein ratio of 1:40 and the
sample was incubated for 4 h at 37◦C. Adding a so-
lution of 0.1% trifluoroacetic acid (TFA) stopped the
reaction.

2.2. Analytical instrumentation

Fractionation of peptides from the digest was per-
formed using a Merck-Hitachi HPLC with a diode ar-
ray UV detector. The column was a Waters Symmetry
C18, 4.6 mm × 50 mm, thermostatted at 33◦C. The
gradient (with eluate A, 0.12% TFA and eluate B, 0.1
% TFA in acetonitrile) was optimised using an exper-
imental design and run according toTable 1to give
an optimal separation. Single absorption measurement
was performed at 214 nm at a flow rate of 1.0 ml/min.
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Table 1

Time (min) Acetonitrile (%)

0 7
6.5 13

17 25
28 46
29.5 80
32 80
33.5 7

For the experiment, four sets of samples of LDH from
bovine heart, rabbit muscle, porcine heart and muscle,
with nine samples of each species, were used and all
samples were treated identically seeFig. 1.

Fig. 1. Original chromatograms obtained by Lys-C digestion of LDH proteins. For each specific protein, chromatograms (n = 9) are
superimposed on each other.x-Axis: chromatographic data points,y-axis: arbitrary UV response.

3. Computational methods

All data processing was carried out using Matlab®

(Mathworks, Inc., USA) either by routines writ-
ten “in-house” and/or by the use of m-files in the
toolboxes, Wavelets (Mathworks, Inc.), GA Tool-
box (Department of Automatic Control and Systems
Engineering, the University of Sheffield, UK) and
PLS-Toolbox (Eigenvector, Inc., USA)

3.1. Denoising and data compression by wavelets

In order to minimise the influence of noise and
to facilitate the optimisation procedure with the ge-
netic algorithm, it was found advantageous to reduce
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the data by wavelets. Wavelets are a relatively new
technique in the field of chemometrics and consist
of mathematical functions that divide the data into
different frequency components, each component be-
ing studied with a resolution matched to its scale.
Wavelets are analogous to the Fourier transform, but
preserve the time information upon transformation and
are more adapted to deal with non-stationary data
[19].

The decomposition of the chromatogram was to a
level 4 approximation with the ‘db1’ (Daubechies)
wavelet. The data was compressed to a 1/16 of the
original data (i.e. 7351data points to 460 data points).

3.2. Chromatographic baseline corrections

The differences in baselines, for instance slopes and
levels were adjusted by the baseline correction algo-
rithm, which divides the chromatogram into a number
of equally spaced segments and finds the local min-
imum in each segment, followed by a baseline con-
struction by linear interpolation of (segments+2) data

Fig. 2. Shift interpolation curve.x-Axis: chromatographic data points,y-axis: shifted chromatographic data points.

points. The chromatogram was divided into eight seg-
ments in this case. The calculated baseline was then
subtracted from the chromatogram, respectively.

3.3. Normalization

Each chromatogram was divided with its maximum
value, that is the peak with the largest peak area.

3.4. Peak shift alignments by genetic algorithms

Genetic algorithms are part of evolutionary pro-
gramming, which is being increasingly used in a num-
ber of scientific fields[20,21]. In general, the genetic
algorithm typically starts with randomly generated
solutions to a defined problem. Each solution is eval-
uated according to its fitness, i.e. in our case being
the difference between the actual chromatogram and
a target chromatogram. The next step is to generate a
new generation of solutions. The best solutions of the
previous generation are moved to the new generation
(selection). Some of the solutions are with a certain
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probability used as parents producing new children
solutions by crossover. Finally, a number of mutations
take place to generate an amount of randomness in
the new solution, facilitate the algorithm to explore
new areas of the solution space. Calculated for its fit-
ness, the new generation is tested if the end condition
is satisfied. If so, it is stopped and returns the best
solution in the current generation, otherwise a new
generation of solutions is generated.

In out approach, the peak alignment algorithm
utilizes a shift interpolation curve to align the chro-
matogram toward a target chromatogram, see align-
ment scheme below:

3.5. Alignment scheme

Each chromatogram was aligned against a target
chromatogram.

1. Rough alignment: a linear displacement of the
chromatogram. Moving it forth or back a number
of data points (≤abs(±4) dps).

Fig. 3. A visual comparison between the original chromatographic data (A) and wavelet compressed data (B). The data were compressed
to 1/16 of their original size.

2. Calculates the number of baseline points (xp), by
finding the centre of regions in the chromatogram
lacking peaks, that is peak areas are below a certain
threshold. At the same time therange is set. In this
study thexp corresponds to 16 positions and the
range was≤abs(±3 dps). The number of baseline
point (xp) and its range, are then used to make
the alignment curve. The number ofxp decides
how fine the alignment will be. Morexp implies
more detailed alignment. Therange is set to avoid
overlapping.

3. The genetic algorithm is then used to optimise the
shape off the shift interpolation curve. (Fig. 2).
The GA optimises the values of thexp within
its allowed range. The shift interpolation curve
is calculated by nearest neighbour interpolating
the values in thexp to a vector with the same
size as the chromatogram (adc). adc is smoothed
with an average filter (5 dps) to remove the hard
edges which can cause problem in following in-
terpolation. A vector with the x positions of the
chromatogram is added toadc (adp + 1:460). The
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chromatogram is peak shifted by linear interpola-
tion with adc.

The GA used 60 individuals in 200 generations.
4. Chromatograms are fine adjusted iny-dimension

(peak height) towards the target chromatogram, us-
ing GA. Maximum allowed adjustment is 5% of
the total height. Implies that an additional value is
given to the chromatogram.

The GA used 20 individuals in 30 generations.

To summarize, the best shift interpolation curve, for
each chromatogram, is generated (optimized) by the

Fig. 4. Original chromatograms (A). Wavelet compressed chromatograms (B). Baseline-corrected and peak shift aligned chromatograms (C).

genetic algorithm, and subsequently used to align the
chromatograms used in the following multivariate data
analysis.

3.6. Principal component analysis

Principal component analysis (PCA), see for exam-
ple reference[14,15,18], has been used throughout this
study to visualise and to evaluate the results obtained
on preprocessing of chromatographic data. Data were
mean-centred prior to PCA. The lack of fit,Q, of the
different PCA models was also calculated.Q is the
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Fig. 5. Principal component score plots of protein samples before (A) and after preprocessing (B). In (A) the explained variance of PC1
is 22% and for PC2 19%, and for (B) the corresponding values are 41 and 3 %.
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sum of squares of each sample (each row) of the resid-
ual matrix of the model, which allows for assignment
of confidence limits for the overall residualQ of sam-
ples used to generate the PCA model as well as for
new samples[22].

4. Results and discussion

The use of wavelets reduces the data to 1/16 of
their original size, which was found to be advanta-
geous when running the genetic algorithm as a result
of reducing the search/optimisation space consider-
ably and thus improving data processing times. The
pay-off on data compression of approximately 94% is
slight distortions of peak shapes and peak areas at the
very beginning and ending part of the chromatograms
(seeFig. 3) and loss of resolution. However, this effect
was consistent and similar throughout the processed
chromatograms and thus no extra variations were

Fig. 6. Three cases of deliberately alternated chromatograms through the introduction of an extra peak. (A) Superimposing a peak, (B)
doublet formation, and (C) an extra peak in a peak free region. Peaks were added corresponding to 0.15, 0.45, 1.34, and 4.03% of the
total peak area of the original chromatogram.

introduced by the data compression and denoising
procedures.

Although simple in its approach, the baseline cor-
rection algorithm was found be highly efficient (see
Fig. 4A and B) and deemed to be suitable for its in-
tended use. The resulting chromatograms after peak
alignment are shown inFig. 4C.

The algorithms, including compression and base-
line corrections, combined with the peak shift align-
ment, have been tested and evaluated on two basically
different cases. The first case concerns the clustering
ability for four different forms of the LDH proteins,
which differ in either species origin or organ. As
can be seen inFig. 5, the score plots generated by a
principal component analysis show a substantial im-
provement with regard to clustering properties for the
preprocessed data in comparison to the original data.
The score plots were chosen as the optimal ones for
each condition, i.e. preprocessed or original data. Not
only are the different LDH types completely separated
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from each other, but the information is also captured
by the use of fewer principal components than in the
case of the original data. This shows that the prepro-
cessing algorithms substantially reduce variation in
the data set while preserving information relevant to
the different protein samples. Furthermore, outliers
are more easily detected and diagnosed, as is evident
in Fig. 5. As indicated inFig. 5B, the “porcine heart”
protein samples may contain one outlier. To examine
this, principal component analysis was carried out for
this particular protein sample in its original and in its
preprocessed form. UsingQ statistics (α = 0.05) for
outlier detection and a model of 2 PCs, it is possible to
define one of the nine samples as being a true outlier
in the case where the chromatograms have been sub-
jected to preprocessing. A similar conclusion could
not be drawn from the corresponding PCA model ob-
tained for data not subjected to preprocessing. Careful
visual inspection of that particular chromatogram
substantiates the conclusion about it being an outlier.
A likely explanation for one of the deviating samples
is incomplete digestion of the protein, resulting in a
slightly different pattern in the relative peak areas.

A more common case in a quality control situation
was mimicked in the second case. Here one of the LDH
proteins was subjected to deliberate changes, such as
the addition of an extra peak. This was done in a sys-
tematic fashion by an increasing amount of variation
introduced at each type of alteration. The idea was to
arrive at some kind of threshold value for the peak
detection/changes that could be introduced and allow
a comparison to be made between preprocessed chro-
matograms and the original chromatograms. Three dif-
ferent cases were examined: (A) an extra peak was
added to an existing peak in one of the chromatograms.
The added peak had similar characteristics to that of
the original peak in regard to peak shape and width.
(B) An extra peak was added in close proximity to a
peak in the original chromatogram. This resulted in a
partial resolved doublet, with a resolution factor of 0.5
for equal sized peaks. (C) An extra peak was added
in an area where the original chromatogram lacked
peaks. The different cases are illustrated inFig. 6.
Peaks were added at the following values: 0.15% of
the total integrated area of the original chromatogram,
0.45, 1.34 and 4.03%. In this study the outlier chro-
matogram (porcine heart) was also included to further
validate the procedure for outlier detection. In the lat-

ter part of this study, PC models were generated for the
different cases that accounted for approx. 96–97% of
the explained variance (corresponding to seven PCs)
or three PCs (corresponding to an explained variance
of approximately 67–68%). Statistical analysis of un-
modelled data, i.e. the residual (Q statistic) atα =
0.05, were generated. Owing to the stochastic nature
of the peak alignment procedure, a repeated number of

Table 2
Preprocessed chromatographic data

Q 95% lim.a

Three PCs Seven PCs

A 0.0939 0.0176
B 0.0925 0.0148
C 0.0985 0.0137

3 PCs 7 PCs

Q mean Q std Q mean Q std

Case Ab

0.00% 0.0480 0.0024 0.0171 0.0077
0.15% 0.0531 0.0024 0.0205 0.0097
0.45% 0.0789 0.0030 0.0359 0.0042
1.34% 0.2416 0.0071 0.1615 0.0050
4.03% 1.5572 0.0576 1.3122 0.0471
Outlier 0.5356 0.0035 0.5358 0.0149

Case Bb

0.00% 0.0631 0.0047 0.0091 0.0030
0.15% 0.0573 0.0147 0.0125 0.0045
0.45% 0.0743 0.0128 0.0283 0.0067
1.34% 0.2065 0.0157 0.1776 0.0212
4.03% 1.4589 0.0651 1.4058 0.1340
Outlier 0.5378 0.0137 0.5267 0.0037

Case Cb

0.00% 0.0534 0.0035 0.0153 0.0022
0.15% 0.0559 0.0059 0.0153 0.0052
0.45% 0.0844 0.0122 0.0331 0.0060
1.34% 0.2255 0.0078 0.1747 0.0023
4.03% 1.5523 0.0169 1.4960 0.0083
Outlier 0.5279 0.0077 0.5135 0.0115

Q statistics for PCA models, three and seven PCs, respectively.
Case A, fully overlapped peak. Case B, partial overlap. Case C,
fully resolved peak. SeeFig. 6. Q statistics for the predicted results
are generated from five separately preprocessed chromatographic
data at each level of peak interference.

a Preprocessed chromatographic data. Generated PC models for
Cases A, B, and C.

b Predicted results using generated PC models for preprocessed
chromatographic data. Cases A, B, and C.Q means in bold rep-
resent values outside theQ-95% limit of the model considering
one standard deviation.
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Table 3
Original chromatographic data

Q-95% lim.a

3 PCs 7 PCs

A 2.2446 0.2727
B 2.2446 0.2727
C 2.2446 0.2727

Q Q

Case Ab

0.00% 0.5241 0.1384
0.15% 0.5283 0.1390
0.45% 0.5488 0.1522
1.34% 0.7076 0.2886
4.03% 2.0568 1.5669
Outlier 4.2648 3.0545

Case Bb

0.00% 0.5241 0.1384
0.15% 0.5305 0.1433
0.45% 0.5555 0.1652
1.34% 0.7274 0.3276
4.03% 2.1165 1.6850
Outlier 4.2648 3.0545

Case Cb

0.00% 0.5241 0.1384
0.15% 0.5268 0.1409
0.45% 0.5446 0.1583
1.34% 0.6974 0.3096
4.03% 2.0480 1.6561
Outlier 4.2648 3.0545

Q statistics for PCA models, three and seven PCs, respectively.
Case A, fully overlapped peak. Case B, partial overlap. Case C,
fully resolved peak. SeeFig. 6.

a Original chromatographic data. Generated PC models for
Cases A, B, and C.

b Predicted results using generated PC models for original chro-
matographic data. Cases A, B, and C.Q means in bold are values
outside theQ-95% limit of the model.

preprocessings took place (n = 5). In Tables 2 and 3
the results for the different cases are summarised. For
the model based on seven PCs, usingQ statistics, in-
dications of the difference between original chromato-
graphic data and peak added data show up at the 0.45%
level and are clearly evident at the 1.34% level for all
preprocessed chromatographic data (Table 2). In com-
parison, for the original data (i.e. unprocessed data)
the corresponding levels are 1.34% for indications and
4.03% for clear evidence (Table 3). For models based
on three PCs the difference between preprocessed and
original data is even more pronounced. Preprocessed

data models picks up alterations for all of the three
cases at the 1.34% level. In contrast, for the original
chromatographic data, only the outlier sample is out-
side the confidence level of the three PCs model. These
results indicate that through the proposed preprocess-
ing steps it is possible to obtain an enhancement of
the information extraction and a higher sensitivity to
outlier detection.

5. Conclusion

By combining methodologies based on genetic
algorithms for peak shift alignments, wavelets for
denoising and data compression, a baseline correc-
tion algorithm and principal component analysis for
clustering and classification, small and subtle changes
in peptide maps could be detected. For the peptide
mapping data, detection of subtle differences between
chromatograms, either due to incomplete digestion or
deliberately added changes, was possible due to the
preprocessing procedures applied. It was also possible
to detect these changes at a lower level than in the cor-
responding original chromatographic data. It should
be noted that such an approach easily lends itself to
automation of the entire data evaluation process and
is non-parametric in nature.
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